Planck evidence for a closed Universe and a possible crisis for cosmology (2024)

References

  1. Aghanim, N. et al. (Planck Collaboration) Planck 2018 results. VI. Cosmological parameters. Preprint at https://arxiv.org/abs/1807.06209 (2018).

  2. Aghanim, N. et al. (Planck Collaboration) Planck 2018 results. V. CMB power spectra and likelihoods. Preprint at https://arxiv.org/abs/1907.12875 (2019).

  3. 2018 Cosmological Parameters and MC Chains (Planck Legacy Archive Wiki); https://go.nature.com/2OHvQme

  4. Linde, A. D. A new inflationary Universe scenario: a possible solution of the horizon, flatness, hom*ogeneity, isotropy and primordial monopole problems. Phys. Lett. B 108, 389–393 (1982).

    ADS Google Scholar

  5. Albrecht, A. & Steinhardt, P. J. Cosmology for grand unified theories with radiatively induced symmetry breaking. Phys. Rev. Lett. 48, 1220–1223 (1982).

    ADS Google Scholar

  6. Linde, A. D. Inflation with variable Ω. Phys. Lett. B 351, 99–104 (1995).

    ADS Google Scholar

  7. Linde, A. D. Can we have inflation with Ω > 1? J. Cosmol. Astropart. Phys. 0305, 002 (2003).

    ADS MathSciNet Google Scholar

  8. Uzan, J. P., Kirchner, U. & Ellis, G. F. R. Wilkinson Microwave Anisotropy Probe data and the curvature of space. Mon. Not. Roy. Astron. Soc. 344, L65–L68 (2003).

    ADS Google Scholar

  9. Efstathiou, G. Is the low cosmic microwave background quadrupole a signature of spatial curvature? Mon. Not. Roy. Astron. Soc. 343, L95–L98 (2003).

    ADS Google Scholar

  10. Freivogel, B., Kleban, M., Rodríguez Martínez, M. & Susskind, L. Observational consequences of a landscape. J. High Energy Phys. 3, 039 (2006).

    ADS MathSciNet MATH Google Scholar

  11. Guth, A. H. & Nomura, Y. What can the observation of nonzero curvature tell us? Phys. Rev. D 86, 023534 (2012).

    ADS Google Scholar

  12. Riess, A. G. et al. New parallaxes of galactic cepheids from spatially scanning the Hubble Space Telescope: implications for the Hubble constant. Astrophys. J. 855, 136 (2018).

    ADS Google Scholar

  13. Riess, A. G., Casertano, S., Yuan, W., Macri, L. M. & Scolnic, D. Large Magellanic Cloud cepheid standards provide a 1% foundation for the determination of the Hubble constant and stronger evidence for physics beyond ΛCDM. Astrophys. J. 876, 85 (2019).

    ADS Google Scholar

  14. Hildebrandt, H. et al. KiDS-450: cosmological parameter constraints from tomographic weak gravitational lensing. Mon. Not. Roy. Astron. Soc. 465, 1454–1498 (2017).

    ADS Google Scholar

  15. Joudaki, S. et al. KiDS-450: testing extensions to the standard cosmological model. Mon. Not. Roy. Astron. Soc. 471, 1259–1279 (2017).

    ADS Google Scholar

  16. Motloch, P. & Hu, W. Tensions between direct measurements of the lens power spectrum from Planck data. Phys. Rev. D 97, 103536 (2018).

    ADS Google Scholar

  17. Charnock, T., Battye, R. A. & Moss, A. Planck data versus large scale structure: methods to quantify discordance. Phys. Rev. D 95, 123535 (2017).

    ADS Google Scholar

  18. Raveri, M. & Hu, W. Concordance and discordance in cosmology. Phys. Rev. D 99, 043506 (2019).

    ADS MathSciNet Google Scholar

  19. Adhikari, S. & Huterer, D. A new measure of tension between experiments. J. Cosmol. Astropart. Phys. 1901, 036 (2019).

    ADS MathSciNet Google Scholar

  20. Bernal, J. L., Verde, L. & Riess, A. G. The trouble with H0. J. Cosmol. Astropart. Phys. 1610, 019 (2016).

    ADS Google Scholar

  21. Zhao, G. B. et al. Dynamical dark energy in light of the latest observations. Nat. Astron. 1, 627–632 (2017).

    ADS Google Scholar

  22. Di Valentino, E., Melchiorri, A., Linder, E. V. & Silk, J. Constraining dark energy dynamics in extended parameter space. Phys. Rev. D 96, 023523 (2017).

    ADS Google Scholar

  23. Poulin, V., Smith, T. L., Karwal, T. & Kamionkowski, M. Early dark energy can resolve the Hubble tension. Phys. Rev. Lett. 122, 221301 (2019).

    ADS Google Scholar

  24. Yang, W., Pan, S., Di Valentino, E., Saridakis, E. N. & Chakraborty, S. Observational constraints on one-parameter dynamical dark-energy parametrizations and the H0 tension. Phys. Rev. D 99, 043543 (2019).

    ADS MathSciNet Google Scholar

  25. Bond, J. R., Efstathiou, G. & Tegmark, M. Forecasting cosmic parameter errors from microwave background anisotropy experiments. Mon. Not. Roy. Astron. Soc. 291, L33–L41 (1997).

    ADS Google Scholar

  26. Efstathiou, G. & Bond, J. R. Cosmic confusion: degeneracies among cosmological parameters derived from measurements of microwave background anisotropies. Mon. Not. Roy. Astron. Soc. 304, 75–97 (1999).

    ADS Google Scholar

  27. Elgaroy, O. & Multamaki, T. On using the CMB shift parameter in tests of models of dark energy. Astron. Astrophys. 471, 65–70 (2007).

    ADS Google Scholar

  28. Hinshaw, G. et al. Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: final maps and results. Astrophys. J. Suppl. 208, 25 (2013).

    ADS Google Scholar

  29. Spiegelhalter, D., Best, N. G., Carlin, B. P. & van der Linde, A. Bayesian measures of model complexity and fit. J. R. Stat. Soc. B 64, 583–639 (2002).

    MathSciNet MATH Google Scholar

  30. Trotta, R. Bayes in the sky: Bayesian inference and model selection in cosmology. Contemp. Phys. 49, 71–104 (2008).

    ADS Google Scholar

  31. Liddle, A. R. Information criteria for astrophysical model selection. Mon. Not. Roy. Astron. Soc. 377, L74–L78 (2007).

    ADS Google Scholar

  32. Verdinelli, I. & Wasserman, L. Computing Bayes factors using a generalization of the Savage–Dickey density ratio. J. Am. Stat. Assoc. 90, 614–618 (1995).

    MathSciNet MATH Google Scholar

  33. Trotta, R. Applications of Bayesian model selection to cosmological parameters. Mon. Not. Roy. Astron. Soc. 378, 72–82 (2007).

    ADS Google Scholar

  34. Ade, P. A. R. et al. (Planck Collaboration) Planck 2015 results. XIII. Cosmological parameters. Astron. Astrophys. 594, A13 (2016).

  35. Addison, G. E. et al. Quantifying discordance in the 2015 Planck CMB spectrum. Astrophys. J. 818, 132 (2016).

    ADS Google Scholar

  36. Beutler, F. et al. The 6dF Galaxy Survey: baryon acoustic oscillations and the local Hubble constant. Mon. Not. Roy. Astron. Soc. 416, 3017–3032 (2011).

    ADS Google Scholar

  37. Ross, A. J. et al. The clustering of the SDSS DR7 main galaxy sample—I. A 4 per cent distance measure at z = 0.15. Mon. Not. Roy. Astron. Soc. 449, 835–847 (2015).

    ADS Google Scholar

  38. Alam, S. et al. The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological analysis of the DR12 galaxy sample. Mon. Not. Roy. Astron. Soc. 470, 2617–2652 (2017).

    ADS Google Scholar

  39. Aghanim, N. et al. (Planck Collaboration) Planck 2018 results. VIII. Gravitational lensing. Preprint at https://arxiv.org/abs/1807.06210 (2019).

  40. Abbott, T. M. C. et al. (Dark Energy Survey and South Pole Telescope Collaborations) Dark Energy Survey Year 1 results: a precise H0 measurement from DES Y1, BAO, and D/H data. Mon. Not. Roy. Astron. Soc. 480, 3879–3888 (2018).

  41. Hikage, C. et al. Cosmology from cosmic shear power spectra with Subaru Hyper Suprime-Cam first-year data. Publ. Astron. Soc. Jpn 71, 43 (2019).

    ADS Google Scholar

  42. Schlaufman, K. C., Thompson, I. B. & Casey, A. R. An ultra metal-poor star near the hydrogen-burning limit. Astrophys. J. 867, 98 (2018).

    ADS Google Scholar

  43. Bond, H. E., Nelan, E. P., VandenBerg, D. A., Schaefer, G. H. & Harmer, D. HD 140283: a star in the solar neighborhood that formed shortly after the big bang. Astrophys. J. 765, L12 (2013).

    ADS Google Scholar

  44. Jimenez, R., Cimatti, A., Verde, L., Moresco, M. & Wandelt, B. The local and distant Universe: stellar ages and H0. J. Cosmol. Astropart. Phys. 3, 043 (2019).

    ADS Google Scholar

  45. Cyr-Racine, F. Y., de Putter, R., Raccanelli, A. & Sigurdson, K. Constraints on large-scale dark acoustic oscillations from cosmology. Phys. Rev. D 89, 063517 (2014).

    ADS Google Scholar

  46. Blennow, M., Fernandez-Martinez, E., Mena, O., Redondo, J. & Serra, P. Asymmetric dark matter and dark radiation. J. Cosmol. Astropart. Phys. 1207, 022 (2012).

    ADS Google Scholar

  47. Mangano, G., Melchiorri, A., Serra, P., Cooray, A. & Kamionkowski, M. Cosmological bounds on dark matter–neutrino interactions. Phys. Rev. D 74, 043517 (2006).

    ADS Google Scholar

  48. Leonard, C. D., Bull, P. & Allison, R. Spatial curvature endgame: reaching the limit of curvature determination. Phys. Rev. D 94, 023502 (2016).

    ADS Google Scholar

  49. Bull, P., Ferreira, P. G., Patel, P. & Santos, M. G. Late-time cosmology with 21 cm intensity mapping experiments. Astrophys. J. 803, 21 (2015).

    ADS Google Scholar

  50. Lewis, A. & Bridle, S. Cosmological parameters from CMB and other data: a Monte Carlo approach. Phys. Rev. D 66, 103511 (2002).

    ADS Google Scholar

  51. Scolnic, D. M. et al. The complete light-curve sample of spectroscopically confirmed SNe Ia from Pan-STARRS1 and cosmological constraints from the combined Pantheon sample. Astrophys. J. 859, 101 (2018).

    ADS Google Scholar

  52. Cooke, R. J., Pettini, M. & Steidel, C. C. One percent determination of the primordial deuterium abundance. Astrophys. J. 855, 102 (2018).

    ADS Google Scholar

  53. Kazin, E. A. et al. The WiggleZ Dark Energy Survey: improved distance measurements to z = 1 with reconstruction of the baryonic acoustic feature. Mon. Not. Roy. Astron. Soc. 441, 3524–3542 (2014).

    ADS Google Scholar

  54. Abbott, T. M. C. et al. (Dark Energy Survey Collaboration) Dark Energy Survey Year 1 results: measurement of the baryon acoustic oscillation scale in the distribution of galaxies to redshift 1. Mon. Not. Roy. Astron. Soc. 483, 4866–4883 (2019).

    ADS Google Scholar

  55. Bautista, J. E. et al. Measurement of baryon acoustic oscillation correlations at z = 2.3 with SDSS DR12 Lyα-Forests. Astron. Astrophys. 603, A12 (2017).

    Google Scholar

  56. Ata, M. et al. The clustering of the SDSS-IV extended Baryon Oscillation Spectroscopic Survey DR14 quasar sample: first measurement of baryon acoustic oscillations between redshift 0.8 and 2.2. Mon. Not. Roy. Astron. Soc. 473, 4773–4794 (2018).

    ADS Google Scholar

  57. du Mas des Bourboux, H. et al. Baryon acoustic oscillations from the complete SDSS-III Lyα-quasar cross-correlation function at z = 2.4. Astron. Astrophys. 608, A130 (2017).

    Google Scholar

Download references

Planck evidence for a closed Universe and a possible crisis for cosmology (2024)
Top Articles
Latest Posts
Article information

Author: Francesca Jacobs Ret

Last Updated:

Views: 5812

Rating: 4.8 / 5 (68 voted)

Reviews: 91% of readers found this page helpful

Author information

Name: Francesca Jacobs Ret

Birthday: 1996-12-09

Address: Apt. 141 1406 Mitch Summit, New Teganshire, UT 82655-0699

Phone: +2296092334654

Job: Technology Architect

Hobby: Snowboarding, Scouting, Foreign language learning, Dowsing, Baton twirling, Sculpting, Cabaret

Introduction: My name is Francesca Jacobs Ret, I am a innocent, super, beautiful, charming, lucky, gentle, clever person who loves writing and wants to share my knowledge and understanding with you.